Contents

1 Overview 4

2 Getting started 5
 Investigator and randomisation accounts 5
 Administrator accounts 5

3 Randomising 7
 Telephone randomisation 9
 Notifications 9
 Manual randomisation 9
 Randomisation limit 10
 Randomisation disabled 10
 Randomisation form 10

4 Viewing and downloading randomisations 11
 Viewing 11
 Downloading 12

5 Editing randomisations 13

6 Randomised in error 14

7 Unblinding (code-break) 16
 After unblinding 18

8 Code lists 19
 Terminology 19
 Kit 19
9 Assigning kits
 How to assign a kit .. 27
 Failed kit assignment at randomisation 28
 Notifications ... 28
 Viewing assigned kits ... 28
 Deallocated kits .. 30

10 Sites
 Site identifier ... 31
 Timezone .. 31

11 Queries
 Opening queries ... 34
 Adding messages ... 36
 Email notifications .. 36
 Listing queries .. 36

12 Reports .. 40

13 Downloads
 Data dictionary .. 41
 CSV format .. 41
 Stata format .. 44
 Example .. 44
 Conversion notes .. 46
 Stata with .do file format .. 46

14 Audit trail .. 47
 Example extract .. 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Settings</td>
<td>50</td>
</tr>
<tr>
<td>Review step</td>
<td>50</td>
</tr>
<tr>
<td>Subject delete</td>
<td>52</td>
</tr>
<tr>
<td>Form delete</td>
<td>52</td>
</tr>
<tr>
<td>Randomisation</td>
<td>52</td>
</tr>
<tr>
<td>16 Specification</td>
<td>53</td>
</tr>
<tr>
<td>17 Making changes to the specification</td>
<td>54</td>
</tr>
<tr>
<td>18 Minimisation</td>
<td>57</td>
</tr>
<tr>
<td>Example</td>
<td>57</td>
</tr>
<tr>
<td>Incorporating a random element</td>
<td>58</td>
</tr>
<tr>
<td>Factorial trials</td>
<td>59</td>
</tr>
<tr>
<td>19 Random permuted blocks</td>
<td>61</td>
</tr>
<tr>
<td>Stratification</td>
<td>61</td>
</tr>
<tr>
<td>Choice of block size</td>
<td>62</td>
</tr>
<tr>
<td>20 Simulations</td>
<td>63</td>
</tr>
<tr>
<td>How are the simulations produced?</td>
<td>63</td>
</tr>
<tr>
<td>Data specification document</td>
<td>63</td>
</tr>
<tr>
<td>Analysing the simulated data</td>
<td>65</td>
</tr>
<tr>
<td>Example</td>
<td>65</td>
</tr>
<tr>
<td>21 API</td>
<td>70</td>
</tr>
</tbody>
</table>
Chapter 1

Overview

Sealed Envelope’s comprehensive randomisation system allows investigators to randomise patients to clinical trials quickly and simply using their web browser and/or telephone.

The system can also be used by staff at trial coordinating centres to view and download randomisation data, add sites, view reports on randomisation activity and, where appropriate, view and update the code list to aid supply logistics activities.

Each system is configured individually for the trial it relates to. This means that some features described in this help may not be enabled for your trial.

This documentation applies to version 12, released July 2016. The version number is shown in the footer of every page when logged into the randomisation system.
Chapter 2

Getting started

Investigator and randomisation accounts

If you will be randomising patients, an administrator for your trial will create your user account. Administrators are usually staff at the trial coordinating centre. The login details will be sent to your email address. This user account will normally be associated with your site and you will only be able to randomise and view randomisations at this site.

When you login, you will normally first arrive at a summary page showing the trials you have access to. You can also manage your account details and change your password here. You can get to the summary page at any time using the Home link.

Once you access a trial you will be able to see previous randomisations at your site and perform randomisations yourself.

Administrator accounts

When a randomisation system is set up, the first administrator account is created by Sealed Envelope and the login details are sent to that person’s email address. The administrator should log in and create the trial sites, unless the sites have been pre-coded by Sealed Envelope.

You do not need to add all your sites at once - you can come back later and add more sites as needed.
Next you should add some investigator accounts for each site so that randomisations can be performed by staff at the sites. You do this through the user manager.

If your trial has a code list you should update the list to reflect the availability of treatment kits at each site. Randomisation cannot occur if there are no codes available at a site.

Finally check the specification page and randomisation form and report any discrepancies or errors to Sealed Envelope.
Chapter 3

Randomising

For trials set-up for internet randomisation a Randomise link will be shown in the top menu bar or a Randomisation form will be present in the CRF. Either route takes the user to the randomisation form that requests relevant subject information needed to perform the randomisation. The form will vary depending on the trial; each trial is individually configured. Administrative users may see a field to select the site the subject originates from. Investigators can only randomise for the site they are associated with and so will not see this option.

Once the form has been completed and submitted the user will be asked to review the information they entered and check it is correct. They can return to the previous screen to change items if any are incorrect. To continue, and generate a randomised allocation, the user must enter their password and click on the Confirm button. If the randomisation succeeds the user will be shown the randomisation code on-screen. For unblinded trials the code shown is the actual treatment group. Some trials may display multiple codes (for example where the amount of drug to be given depends on a subject’s weight).

Randomisation may not succeed for trials with code lists if no randomisation codes are available for the site concerned. Depending on trial configuration, randomisation may also fail if a subject with the same details has previously been randomised (duplicate).
Randomisation

The subject was successfully randomised.

Randomised to **Control** at 24 Mar 2016 17:51 GMT

Figure 3.1: Result of randomising a subject
Telephone randomisation

For trials set-up for telephone randomisation the user may randomise a subject using a touch-tone telephone by calling the trial specific telephone number. After authentication, the user will be asked a series of questions to collect stratification information and check eligibility. Once all information has been collected the randomisation will take place and the randomised group or code will be announced to the caller. Telephone randomisations can be viewed in the online system in the same way as randomisations carried out online.

Notifications

An email containing the randomisation code will be automatically sent out to all relevant users that have notifications enabled. Relevant users are trial administrators and all investigators associated with the site that the randomisation originates from. Notifications are not sent to users with suspended accounts. Administrators can see the format of notification emails on the specification page.

Manual randomisation

Occasionally, it may be necessary to randomise a subject outside the randomisation system. This is called a manual randomisation. To record the details of manual randomisations in the system an administrator should click the Enter manual randomisation details link at the bottom of the randomisation form. This will reveal extra fields: date and time of randomisation, and randomisation group or code. For blinded trials with a code list the code entered must match an unused code in the code list. However, no other validation is performed on the code: expiry date (if set) and site where the code is available are not checked. Once the form is saved the randomisation is recorded and clearly marked as a manual randomisation. If your trial uses minimisation for balancing treatment groups, then manual randomisations will be taken into account for future randomisations.
Randomisation limit

A randomisation limit is enforced that prevents further randomisations taking place once the limit is reached. The limit can be seen on the specification page. Randomisations marked as in error do not count towards the limit.

Randomisation disabled

If an administrator has disabled randomisation it will not be possible to add a new randomisation form. The exception is that administrators can still record manual randomisations. Existing randomisation forms remain accessible for viewing and editing.

Randomisation form

The randomisation form behaves in the same way as other Red Pill forms with a few exceptions. Firstly, validation overrides are not enabled so that any errors in data-entry must be resolved before proceeding. Secondly, the review step is never disabled for the randomisation form, even if it is disabled for other forms in a Red Pill application.
Chapter 4

Viewing and downloading randomisations

Viewing

For trials set-up for internet randomisation only, clicking the **Randomisations** link in the top menu will display a list of randomisations. Administrators will see all randomisations, including manual randomisations and those subsequently marked as randomised in error, but Investigators can only see randomisations carried out at their site.

For trials with a randomisation form in the CRF, clicking the **Subjects** link in the top menu will display a list of subjects. Randomised subjects can be identified from the **Date randomised** column.

![Randomisations](image)

Figure 4.1: Viewing list of randomisations

The list can be restricted by typing in search terms and ordered by clicking on the row headers. Clicking one of the randomisations or subjects in the list displays more detail for that record. A
link will be displayed to mark as randomised in error if the subject has been randomised. Some trials may also have a link to unblind the randomisation.

The unblinded treatment group will never be given out by the randomisation system for double-blind trials, except for when the unblinding procedure is followed.

Downloading

The randomisations can be downloaded in either CSV or Stata fixed format by clicking on the **Downloads** link in the top menu and choosing the randomisation form from the list of forms. See the [downloads documentation](#) for more information.

For blinded trials the data will not contain the treatment group, even if the randomisation has been unblinded. Kit codes assigned to randomised subjects can be determined by downloading the code list and joining on the `patientId` field (= Subject id).
Chapter 5

Editing randomisations

Randomisation forms may be edited but note the following:

- The treatment group or code can never be edited.
- Making changes to fields used to stratify the randomisation with random permuted blocks will have no effect on the blocking. In other words, randomisation is always stratified by the values recorded at the **time of randomisation**.
- Making changes to fields used to balance the randomisation with minimisation will be reflected in future randomisations. Randomisation with minimisation always takes into account the current values of balancing factors at the point of each randomisation.
- Inclusion and exclusion criteria can be changed to show that the subject was not eligible. Validation rules that prevent ineligible subjects being randomised are removed when editing an existing randomisation form.
- Whether a randomisation was performed manually or not cannot be changed.
Chapter 6

Randomised in error

Randomisations can be marked as in error by an administrator if necessary. Doing so excludes the randomisation from reports and, where minimisation is used, excludes the randomisation from the balancing algorithm when future randomisations are performed.

Randomisations should only be marked as in error when a mistake has been made, such as randomising ineligible subjects or randomising the same subject twice. Randomisations marked as errors would not normally be included in an intention to treat analysis, and consequently care should be taken not to introduce bias by inappropriate marking. A useful discussion of post-randomisation exclusions can be found in this paper:

Fergusson D, Aaron S, Guyatt GH, Hebert P. Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis BMJ. 2002; 325:652-654.

To mark a randomisation as in error the appropriate record should be viewed and the Mark as randomised in error link followed in the subject details section. Marking in error cannot be undone, so care should be taken to ensure the correct record is chosen by double checking the subject identifier shown in the heading. The user will be asked to enter a reason and their password to confirm the need for marking as in error.

After entering a reason and the correct password and clicking the Mark as in error button the record will be marked. The date and time, reason and user who marked the record as in error will be recorded in the details for the randomisation concerned. A red warning triangle will be displayed in the status column of the subject list for those marked in error.
Figure 6.1: A randomisation marked in error
For some double-blind trials the option to unblind treatment may be offered. This option allows those authorised to unblind the treatment for a subject when it is felt necessary to do so on clinical grounds. Authorised users are administrators and those with an unblinding account. For some trials, investigators may also be allowed to perform unblinding.
To unblind a randomisation the record should be viewed by clicking in the subjects/randomisations list, then the **Unblind** link in the subject details section should be clicked.

The unblinding form will request the name and email address, mobile or fax number of the person to be unblinded.

![Unblind Form](image)

Figure 7.1: Unblinding a designated person

The user will then be asked to enter a reason for unblinding and their password to confirm the need for unblinding.

After entering these details and clicking the ‘unblind’ button the user will **not** be shown the true treatment allocation on-screen. Instead an unblinded email, text message or fax will be sent to the designated person. An email stating that an unblinding has taken place will be automatically sent out to all trial administrators and all investigators associated with the site that the randomisation originates from, as long as they have notifications enabled. The date and time of unblinding, user who performed the unblinding and the designated person who was unblinded will be recorded.
in the details for the randomisation concerned.

The format of blinded and unblinded notifications can be viewed on the specification page.

After unblinding

When a subject has been unblinded this will be indicated by an icon in the subject listing, and the subject details will include summary information.

![Randomisation details]

Figure 7.2: An unblinded subject record
Chapter 8

Code lists

Code lists are only relevant to double blind trials. The code list provides the confidential link between the kit codes and the true treatment group. It is used by the drug packager or pharmacist, for instance, to label the active and placebo treatments with the kit code - see the FAQ for more information. Here is an example of a code list in the randomisation system:

The randomisation system does not display the treatment group, but it is useful for administrators to view the other columns in the code list because it shows the location of trial treatments and whether they are available for use.

Terminology

A consistent terminology is used throughout the randomisation system, although in practice different trials may use alternative terms.

Kit

A *kit* is a unit of the investigational product or placebo that will be given to a single subject. In practice a kit may be a vial, a bottle containing pills, a pack containing multiple vials etc. Multiple kits may be given to the same subject, for instance at scheduled follow-up visits or because the original kit has been lost or damaged.

The *kit code* is unique code assigned to a kit. The kit code will be printed on the packaging and given out by the randomisation system. The format of a kit code is usually numeric or alphanumeric (e.g.
Figure 8.1: Code list page

The code list shows the current location and details about all the kits in the trial. A kit is a unit of the investigational product or placebo that will be given to a single subject. In practice, a kit may be a vial, a bottle containing pills, a pack containing multiple vials etc.

Use the form to update selected rows in the code list. Only new, unexpired kits at site will be available for randomisation or assigning to subjects so you must keep this list up to date. The **drug stocks report** is useful for monitoring stock levels at sites.

<table>
<thead>
<tr>
<th>Select</th>
<th>Seq no</th>
<th>Kit code</th>
<th>Batch</th>
<th>Expiry date</th>
<th>Buffer days</th>
<th>Status</th>
<th>Location</th>
<th>Site</th>
<th>Last update</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>ADH</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ALB</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>LN5</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>Dispensed (Randomisation)</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CV5</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>RS4</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WY7</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>AV9</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>RB5</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Emsmth Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>KG6</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Lythn Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>EG4</td>
<td></td>
<td>31 Dec 2025</td>
<td>7</td>
<td>New</td>
<td>Site</td>
<td>Lythn Hosp</td>
<td>13 Jul 2016 16:00 BST</td>
<td></td>
</tr>
</tbody>
</table>
Some trials may have different types of kit, such as different bottle sizes, different dosages or rescue medication. If your trial does not have different kit types you won’t see kit types in your code list.

A kit block is an administratively convenient block of kits and is used in the dispensing policy (see below). Kits are often shipped in whole blocks and the blocks are balanced to represent the randomisation ratio. For instance, a block of 4 in a trial with 1:1 ratio will contain 2 active and 2 placebo treatments. Note, however, that the kit blocks in the code list are not related to the block sizes chosen to balance the randomisation if random permuted block randomisation is in use.

Randomisation kit code is the kit code given out at randomisation.

Sequence number

The sequence number is used to order the code list in a consistent, reproducible manner. It has no other function - in particular do not assume that kits are given out in sequence number order (see dispensing policy below).

Batch

Batch is optional but is intended to record the manufacturer’s lot or batch number.

Expiry

Kits must be given an expiry date and that date must be in the future before they can be dispensed. Kits will not be dispensed in the buffer days leading up to the expiry date either. This is to prevent kits being dispensed that may expire during the period of their use.

Viewing a code list

For trials that have a code list, a Code list link may be shown in the top menu to administrators. It will not be shown for trials that are not shipping kits to sites such as trials where the drug is made up in the pharmacy on demand using bulk supplies.

Expired kits and those without an expiry date are greyed out. The list can be filtered and sorted using the controls in the table headings.
Updating

Kits can be selected using the checkboxes to the left of the list, or by clicking anywhere on a row. Shift-click and Control/Command-click can be used to select multiple rows.

Figure 8.2: Updating a code list

Selected rows are updated using the form above the code list. This takes the user to a confirmation screen showing the actions that will be carried out and any warnings for unusual changes. Warnings are shown when:

- Changing batch, expiry date, expiry buffer, status or notes for a dispensed kit
- Moving kits between sites
- Changing status from **Dispensed** to any other value
- Changing status of a previously dispensed kit to **New** as this will remove the link to the subject the kit was dispensed to
- Changing location from **Site** to any other value as this will remove the link to a specific site
If a warning is shown the user will be required to enter a reason for making the change. This reason will be recorded in the audit trail.

It is not possible to change the kit type, location or site if a kit has been dispensed.

Update list

Please confirm that you wish to update the code list.

The following code(s) will be updated: 90001, 90002, 90003, 90004, 90005, and 4995 more codes.

The following actions will be performed:

- Update expiry date to 31/12/2020
- Update buffer to 7 days

Figure 8.3: Confirmation of changes to code list

Dealocating a kit from a subject

Sometimes it may be desirable to deallocate a kit from a subject, such as when a subject was randomised in error or withdraws before the kit is used. This can be done by updating the kit in the codelist and changing the status from Dispensed back to New. This makes the kit available again for use at the site. Kits deallocated in this way are still shown when viewing the original subject along with the date of deallocation.

Dispensing policy

Kits are assigned to subjects at randomisation and during follow-up according to a dispensing policy. The default policy is to assign kits which:

- Match the subject’s randomised treatment group
- Have not expired and are not within the expiry buffer before the expiry date
- Have a status of New
- Have a location of Site and are at the same site as the subject
- Come from lower kit block numbers

Kits are chosen at random from the pool of eligible kits (with lower numbered kit blocks preferred) to reduce the chance of treatment information being gleaned from the order in which kits are used. Note this means that kits are not allocated in sequence number order.

The dispensing policy for particular trials can vary from the default policy. Extra factors such as follow-up visit, kit type or patient characteristics may be taken into account. You should check the specification page for your trial to see if this is the case.

Stock levels

It is the administrators responsibility to update the code list to reflect the real world location of kits and make sure sites have enough stock available for randomisation and follow-up visits as appropriate. The drug stocks report shows the number of new, unexpired kits available at each site. It will also show warnings for sites where there are fewer than 2 kits available for any treatment group. Randomisation may fail if there are insufficient kits available at site.

Drug stocks

New, unexpired kits marked as on site in the code list by site. Make sure you have enough kits available at each actively recruiting site. Note that kits without an expiry date and those within the buffer zone before expiry are shown as expired as they will not be chosen for randomisation. Click on a column heading to sort by that column.

<table>
<thead>
<tr>
<th>Site</th>
<th>Total kits</th>
<th>Kits dispensed</th>
<th>Expired</th>
<th>New, unexpired kits on site</th>
<th>Warnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exmouth Hospital</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>One or more treatments has fewer than 2 kit(s) available!</td>
</tr>
<tr>
<td>Luton Hospital</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.4: Drug stocks report
Downloading

The full blinded code list can be downloaded by clicking on the ‘Download as CSV’ link shown at the top of the code listing. The code list will be sent as a plain text comma separated value file. The field names are given in the first row. For example:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>id,patientId,code,kitBlock,kitType,batch,expiryDate,expiryBuffer,kitStatus,dispensedVisit,location,siteId,dateUpdate,notes,siteName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,SG6,1,,,2035-12-12,0,Dispensed,Randomisation,Site,2,"2016-07-14 17:02:24","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2,ZV0,1,,,2035-12-12,0,Dispensed,Randomisation,Site,2,"2016-07-14 17:02:24","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,1,FI4,1,,,2035-12-12,0,Dispensed,Randomisation,Site,2,"2016-07-14 17:02:24","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,,ZD4,1,,,2035-12-12,0,New,,Site,2,"2016-07-15 15:55:36","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,,XB3,2,,,2035-12-12,0,New,,Site,2,"2016-07-15 15:55:36","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,,HC3,2,,,2035-12-12,0,New,,Site,2,"2016-07-15 15:55:36","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,,KG0,2,,,2035-12-12,0,New,,Site,2,"2016-07-15 15:55:36","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,,YH5,2,,,2035-12-12,0,New,,Site,2,"2016-07-15 15:55:36","Luton Hospital"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields present are:

- **id** Sequence number
- **patientId** If the kit has been dispensed, the id of the subject the kit was assigned to. Use this field to link kits to other subject data
- **code** Kit code
- **kitBlock** Kit block number
- **kitType** Type of kit (optional)
- **batch** Manufacturer’s batch or lot number (optional)
- **expiryDate** Expiry date (yyyy-mm-dd format)
- **expiryBuffer** Buffer period in days before the expiry date when kit will not be allocated
- **dispensedVisit** Visit when kit was allocated, such as ‘Randomisation’, ‘Follow-up’ etc
- **location** Current location of kit - one of ‘Manufacturer’, ‘Distributor’, ‘Site’, ‘Other’
- **siteId** ID of site where kit is located. Will be blank if not at a site or if the kit can be used at all sites
- **dateUpdate** Timestamp of when kit information was last updated (UTC, yyyy-mm-dd hh:mm:ss format)
• notes Notes (optional)
• siteName Name of site
Chapter 9

Assigning kits

Double blind trials use a code list to automatically assign kit codes at randomisation. Kits can also be assigned at a later time by administrators or investigators, at follow-up visits, for instance, or to replace lost or damaged kits.

Not all trials with a code list can assign kits. This feature will not be available in trials where the drug is made up in the pharmacy on demand using bulk supplies.

How to assign a kit

To assign a new kit to a randomised subject, first locate the subject in the randomisations or subjects list. A link to assign a kit code is shown. This takes the user to a form to complete with the reason for assigning a new kit. Depending on the trial, this form may also have options for selecting visit, kit type or number of kits required. The user must enter their password to confirm the action and a new kit code(s) will be chosen from the code list and shown to the user.

The kit is chosen according to a dispensing policy in the same way as at randomisation. If insufficient kits are available an error message will be shown when trying to assign a kit.
Failed kit assignment at randomisation

Occasionally, if a subject is randomised at a site with low stock levels, a suitable kit may not be available that matches the chosen treatment group. In this case the subject will be shown with a warning message that no kits have been allocated. A kit should be manually assigned as soon as the site is re-supplied.

Notifications

An email notification will be sent out to the same recipients as for randomisations. The format of the email can be seen on the specification page.

Viewing assigned kits

Assigned kits are shown in the kit codes section of the randomisation or subject details. All kits assigned are shown in the Kit codes column of the randomisations or subjects list. The list can be searched to find the subject a specific code was assigned to.
Randomisation details

Subject ID: 2000/21
Site: 1: Exmouth Hospital, Algeria
Date randomised: 25 Aug 2016 17:15 BST
Randomisation kit code

View randomisation form
No kits have been assigned! This may be because no suitable kits could be found at randomisation. Assign a kit code manually when more stock becomes available.

Mark as randomised in error
Unblind

Kit codes

Assign kit code

<table>
<thead>
<tr>
<th>Kit code</th>
<th>Kit type</th>
<th>Expiry date</th>
<th>Date/time assigned</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI4</td>
<td></td>
<td>12 Dec 2035</td>
<td>25 Aug 2016 17:15 BST</td>
<td>Randomisation by Ms Admin (ID 2)</td>
</tr>
<tr>
<td>SG6</td>
<td></td>
<td>12 Dec 2035</td>
<td>6 Sep 2016 12:36 BST</td>
<td>"Original kit was mislaid by patient" by Superuser (ID 1)</td>
</tr>
</tbody>
</table>

Figure 9.2: Subject without assigned kit

Figure 9.3: Randomisation with assigned kits
Deallocated kits

If a kit has been deallocated from a subject in the code list, it is still shown in the assigned kits section along with the date of deallocation.

Figure 9.4: Randomisation with deallocated kit
Chapter 10

Sites

Trial sites (centres) must be added to the system before adding or randomising a subject, updating a code list, or creating investigator accounts. Sites must also be set to Recruiting before subjects can be added.

Administrators can add sites by clicking on the Sites link in the top menu, followed by the Create a new site link.

Site identifier

The site identifier can be any alphanumeric text and may be used in some trials to create a subject identifier of the form \(SNNN \) where \(S \) is the site identifier and \(NNN \) is a sequential number (either within or across sites).

Note it is not possible to change the site identifier if a site has associated records, such as user accounts, subjects, kits in the code list or allocations in a randomisation list stratified by site.

Timezone

The timezone of a site affects the display of randomisation dates and times generated by the system, such as date/time of randomisation, unblinding and marked in error. It is also used by validation rules such as checking whether a date is in the past. Other date/time, such as timestamps on forms, are usually displayed in GMT timezone (UTC).
Create a new site

Identifier*
3
Name*

Country
Choose...

Timezone*
Europe/London

Recruiting*
- Yes
- No

It will not be possible to add subjects at this site if the site is not recruiting

Notes

Figure 10.1: Adding a new site
Note that sites **cannot be deleted** if they have associated records, such as user accounts, subjects, kits in the code list or allocations in a randomisation list stratified by site.
Chapter 11

Queries

Queries are intended to be used by administrators to raise questions about the form data for investigators to answer and for investigators to notify administrators of any issues they are aware of in completed forms. Queries can be linked generally to a subject, or more specifically to a particular form for a subject. Queries may only be closed by administrator users. Investigators can create new queries and add messages to existing queries.

Opening queries

A query can be opened either on the subject details panel or when viewing a form, by clicking on the Create a query link. The query must be given a title and an initial message. To link the query to a specific form in the CRF, choose the appropriate form from the related form drop-down control. Once it has been created, the query will be shown on the subject details panel and form specific queries will also be shown when viewing the form. In addition, if a form has an open query attached, an amber question mark symbol appears next to the form name in the subject details panel.

Note that creating a query or re-opening a closed query linked to a form will cause the form to be marked as not validated.
Create a query

Related form
 Baseline - Interviewers questions

Related question
 Marital status

Title*

Message*
 Re: Marital status

Create query

* required

This query relates to the following form:

Interviewers questions

Demographics and Clinical information, ECOG, Treatment Expectation

Figure 11.1: Creating a new query
Adding messages

Messages may be added to queries by investigators or administrators, forming a conversation thread. Administrators can close a query when the issue has been resolved. Administrators may also re-open a closed query by setting the action to ‘Reopen’ when adding a new message to it.

When viewing a query, printing the web-page will display an extra box that asks the investigator to write their response, with signature and date. This may be useful for the site’s own records or workflow.

Email notifications

When a query is created or updated an email notification is sent out to:

- On creation: all administrators, and all investigators at the same site as the subject the query relates to;
- On update: all users who have participated in the query - that is the user who created the query and any user who has added a message to the query.

The format of the notification email is:

```
From: Sealed Envelope
Subject: [Trialname] Query updated
Date: Thu, 22 Oct 2015 15:43:22 +0100
To: joe@trialsite.org,admin@trialcentre.org

A query "Confirm date of birth" has just been updated by Joe Bloggs (ID 8). You can view the query here:

https://www.sealedenvelope.com/Trialname/query/view/3

Note, this message was auto-generated on Thu 22 Oct 2015 15:43 Europe/London (GMT +0100).
```

Listing queries

A list of queries grouped by site is displayed by clicking on the Queries link in the top menu. The conversation thread for a query can be viewed by clicking on the query in the list. This view also
Figure 11.2: Viewing an open query
Figure 11.3: Response box shown when printing a query
displays links for editing the query or viewing the related subject or form.
Chapter 12

Reports

Various reports summarising data-entry and randomisation activity and site status are available by clicking on the Reports link in the top menu. Clicking on a report title displays the report compiled from the live database so that it is always up to date. Report data can be downloaded as a plain text comma separated value file by clicking on the Download as CSV link. Reports may also be sorted by clicking on a column heading or filtered by entering search terms into the search box.

Completed forms

List of all completed forms and time delay between creation and last edit ("Edit delay"). All dates and times are shown in UTC. Click on a column heading to sort by that column.

Search:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Form</th>
<th>Time completed</th>
<th>Last updated</th>
<th>Edit delay, days</th>
<th>Validation status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T719</td>
<td>Patient Questions</td>
<td>23 Mar 2016 12:51</td>
<td>23 Mar 2016 17:22</td>
<td>0</td>
<td>Not validated</td>
</tr>
<tr>
<td>S5050</td>
<td>Interviewers questions</td>
<td>23 Mar 2016 16:50</td>
<td>23 Mar 2016 16:50</td>
<td>0</td>
<td>Not validated</td>
</tr>
<tr>
<td>S5706</td>
<td>Interviewers questions</td>
<td>23 Mar 2016 16:48</td>
<td>23 Mar 2016 16:48</td>
<td>0</td>
<td>Not validated</td>
</tr>
</tbody>
</table>

Figure 12.1: Viewing a report
Chapter 13

Downloads

CRF data may be downloaded in either CSV or Stata fixed format via the Download link in the top menu. The download page shows a list of forms in the CRF and provides links to download the data for each form individually or for all forms (as a zip file).

Data dictionary

A data dictionary can be viewed which shows the fields for each table (there is one table per form). The field name, data type and label are displayed.

CSV format

The data for each form is provided in comma separated value format, which is a plain text file that can be opened in many spreadsheet or Statistical programs. The first row contains a header with the question labels for each column.

Every file contains a patient identifier field (identifier) and subject ID field (patientId) so that data stored on the same subject in different forms can be linked together.
Form data downloads

CSV files

These CSV format datasets can be imported into Excel, Numbers, Google docs, R etc.

Download individual form data:

- Subject
- Randomisation
- Interviewers questions
- Patient Questions
- Satisfaction of Care
- Concomitant medications
 - Medication - part of Concomitant medications
- Patient Questions
- Interviewers questions
- Patient Questions
- Serious Adverse Events
 - Section A - part of Serious Adverse Events
- Withdrawal

Download all data

Stata files

These datasets are ASCII (text) data in fixed format with a dictionary and can be imported into Stata using the `infile` command:

```
infile using SeWithdrawal_StudyCompletion.dct, clear
```

Figure 13.1: Form data download page
Form data dictionary

Data types are specified as MySQL data types.

Subject

Database table name is patient.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Data type</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>identifier</td>
<td>varchar(255)</td>
<td>Patient identifier</td>
</tr>
<tr>
<td>id</td>
<td>int(10) unsigned</td>
<td></td>
</tr>
<tr>
<td>patientId</td>
<td>int(10) unsigned</td>
<td>Subject id</td>
</tr>
<tr>
<td>userId</td>
<td>varchar(255)</td>
<td>User who created row</td>
</tr>
<tr>
<td>lastUserId</td>
<td>varchar(255)</td>
<td>User who last updated row</td>
</tr>
<tr>
<td>invoNo</td>
<td>int(10)</td>
<td>Telephone randomisation investigator number</td>
</tr>
<tr>
<td>dateEntered</td>
<td>date</td>
<td>Date of study entry yyyy-mm-dd</td>
</tr>
<tr>
<td>dateRandomised</td>
<td>datetime</td>
<td>Date & time of randomisation (UTC)</td>
</tr>
<tr>
<td>code</td>
<td>enum('Control', 'Intervention')</td>
<td>Randomised group</td>
</tr>
<tr>
<td>blockNumber</td>
<td>int(10) unsigned</td>
<td>Block number</td>
</tr>
<tr>
<td>blockSize</td>
<td>int(10) unsigned</td>
<td>Block size</td>
</tr>
<tr>
<td>blockSequence</td>
<td>int(10) unsigned</td>
<td>Sequence number within block</td>
</tr>
<tr>
<td>forced</td>
<td>enum('Control', 'Intervention')</td>
<td>First choice randomised group that was unavailable</td>
</tr>
</tbody>
</table>

Figure 13.2: Form data dictionary

<table>
<thead>
<tr>
<th>Patient identifier</th>
<th>id</th>
<th>Subject id</th>
<th>User who created</th>
<th>Timestamp for row creation (UTC)</th>
<th>Sex - Questions</th>
<th>Marital status - Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>1</td>
<td>1</td>
<td>Sealed Envelope</td>
<td>2016-03-23 11:36:19</td>
<td>Male</td>
<td>Partner - Living with</td>
</tr>
<tr>
<td>T002</td>
<td>2</td>
<td>2</td>
<td>Sealed Envelope</td>
<td>2016-03-23 12:51:18</td>
<td>Female</td>
<td>Married</td>
</tr>
</tbody>
</table>

Figure 13.3: Viewing CSV file in spreadsheet
Stata format

The data for each form is provided in Stata fixed format, which is a plain text file format with a dictionary ‘header’ that describes the format of the rows. Each row contains information from one saved form with a subject identifier field to identify the subject record it belongs to. The data can be easily imported into Stata using the `infile` command.

For example, to import the data from a baseline form called Interviewers questions, the following `infile` command would be used in Stata:

```
infile using InterviewersQuestionsVER1_Baseline.dct, clear compress
```

where `InterviewersQuestionsVER1_Baseline.dct` is the full filesystem path to the downloaded file. The `compress` command is recommended to reduce the storage space allocated to each variable.

Example

Some interview data has been downloaded in Stata fixed format. There are two rows below the dictionary header because only data on two subjects have been entered so far:

```
dictionary {
    str244 identifier "Patient identifier"
    long id "id"
    long patientId "Subject id"
    str244 userIdentifier "User who created row"
    str244 lastUserIdentifier "User who last updated row"
    str244 created "Timestamp for row creation (UTC)"
    str244 updated "Date & time of last update to row (UTC)"
    str244 question1 "Sex - Questions"
    str244 question2 "Marital status - Questions"
    str244 question3 "If other, please specify - Questions"
    str244 question4 "Have you had any previous episodes of depression? - Depression"
    str244 question5 "If so, how many - Depression. Number (up to 2 digits)"
    str244 question6 "Duration of current episode in weeks - Depression. Number (up to 3 digits)"
    str244 question7 "Are you using any treatments for depression at the moment? - Depression"
    str244 question8 "Treatment/Medication Name - Depression"
}
```
The data is imported and compressed, and the output from Stata's `describe` command can be seen in the screenshot. The variable names and variable descriptions have been picked up automatically from the dictionary header.

![Figure 13.4: Form data imported into Stata](image-url)
Category variables are stored as strings so can be tabulated without needing variable labels. Category variables can be encoded if storage space is an issue.

![Tabulating imported form data](image)

Figure 13.5: Tabulating imported form data

Conversion notes

During conversion into Stata download format, note the following changes that are made to the data:

- All strings are truncated at 244 characters
- Newlines are replaced by spaces
- Double quotes are replaced by single quotes

Stata with .do file format

This format provides a pair of Stata files per form: the raw data and a .do file to process the data. The data is imported by running the .do file within Stata. There are some differences to the Stata format described above to make analysis more convenient: categorical variables are stored as numeric values with value labels attached, and additional numeric variables are created for date fields.
Chapter 14

Audit trail

Clicking the Log link in the top menu bar displays the audit trail. The most recent 100 lines are shown by default; click the ‘Show all’ button to see the entire log. The audit trail is a plain text file which can be downloaded if required using the Download button. The log records all significant events and changes to the data including:

- Data entry and editing of forms
- Creation and adding messages to queries
- Creation and editing of sites
- Randomisations
- Movement of blocks within code lists
- Unblinding
- Downloads from the system such as reports in CSV format, CRF data, code list and the audit trail itself

An example extract from a log is shown below. The items shown in each row of the log are (from left to right):

- IP address of the user who initiated the event
- Name and user ID of the user
- URL
- Server date and time (including GMT offset)
- Notice level - usually this will be “INFO (6)”
- Message

Where applicable, the message contains information on the data before and after the event. Some events might generate several related messages - such as an explanatory note.
Figure 14.1: Audit trail

"Edited form Eligibility Criteria Check At Recruitment for Patient SDN01"

plus a change in the data:

"Row in crfBaselineEligibilityCriteria for: {"id" : "1"}, changed From: {"updated" : "2015-10-22 17:45:47","reasonForEdit":null ..."

Example extract

100.2.3.4 "Simon Admin (ID 2)" "/redpill/trialname/crf/reviewadd/ BaselineEligibilityCriteria/1" [2015-10-22T17:45:47+01:00] INFO (6): Row inserted to crfBaselineEligibilityCriteria: {"id":null,"patientId" : "1","userId" : "1","lastUserId" : "1","created" : "2015-10-22 17:45:47","reasonForEdit":null,"notes":null,"diagnosisOfIpfOrNsip" : "No","rhcMeanPap" : "Yes","ageRange" : "No","dateWrittenInformedConsentGiven" : "10\/08\/2008","validationStatus":null,"validationNotes":null}

INFO (6): Edited form Eligibility Criteria Check At Recruitment for Patient SDN01

INFO (6): Row inserted to contact: {"id":null}

INFO (6): Row inserted to individual: {"id" : "52","title":null,"lastName" : "Kinnear","firstName" : "James","jobTitle" : "Layman","responsibility": null,"notes":null,"type" : "individual","qualifications":null,"regNo":null,"cv" : "0","cvDate":null,"delegationLogReceived" : "0","delegationLogReceivedDate":null}

INFO (6): Added contact James Kinnear
Chapter 15

Settings

A settings page is available to administrators that allows some features to be turned on or off to suit the requirements of your trial. Changes to settings are recorded in the audit trail. There are some common settings (see below) and you may also have some trial specific settings.

Review step

The review step is turned on by default and introduces an intermediate step when saving forms. The user is required to review the form data and enter their password to confirm the information is correct before the data is saved to the database. The process is described in the data entry section. Since investigator accounts normally do not have privileges to enter data once it is saved, the review step can help to prevent errors which would then require a query to resolve.

However, you may prefer to turn this review step off. In this case the form is saved immediately with no intermediate review page. This could be preferable, for instance, if you have data entry staff entering paper CRFs into a Red Pill database.

Note the review step is always enabled for randomisation forms
Settings

These are global settings that affect this application's behaviour. Changes to these settings will be recorded in the audit trail.

Review step
- Off
- On

Enable the review step. If enabled, once a form has been completed without errors the “Save form” button will present the user with a review page. The review page allows the user to visually check that the data entered is correct and, if satisfied, complete the declaration by entering their password to save the form. If the review step is disabled the form is saved immediately without the need to complete the password declaration. Note the review step is always enabled for randomisation forms.

Subject delete
- Off
- On

Allow subject records to be deleted by an administrator. Deleting the subject will also delete all associated forms and queries. This cannot be undone so administrators should think carefully before turning on this setting or using this feature. Deleting randomised subjects is strongly discouraged because all randomised subjects must be accounted for.

Randomisation
- Off
- On

Enable randomisation. Manual randomisations can still be recorded by administrators when randomisation is disabled.

Figure 15.1: Settings page
Subject delete

The ability to delete subjects is turned off by default. Deleting a subject will also remove all their CRF data, randomisation data and queries. The deleted data is shown in the audit trail but the action cannot be undone. You should consider very carefully whether to turn this feature on and use it. We recommend it is used only in exceptional circumstances.

We strongly discourage using the delete feature on randomised subjects because all randomised subjects must be accounted for.

If a subject was randomised in error mark them as such rather than deleting the record.

Form delete

Allows an administrator to delete forms. The deleted data is shown in the audit trail. Randomisation forms cannot be deleted - the randomised in error feature should be used instead. Study entry forms may not be deleted either - the subject must be deleted to remove this form.

The form delete setting will not be shown for randomisation only systems

Randomisation

Randomisation systems and Red Pill systems with a randomisation form can turn randomisation on or off. When randomisation is disabled, administrator accounts can still record manual randomisations. This may be useful, for instance, if offline randomisations have been carried out due to the Sealed Envelope website being unavailable.

This is a global setting - to stop randomisation at a specific site, edit the site and set Recruiting to No.
Chapter 16

Specification

The specification for a Red Pill or randomisation application can be viewed by clicking the Specification link in the top menu. The specification is only accessible to administrator users. It shows the following information where relevant:

- Names of forms that can be completed multiple times per patient.
- The timetable used by the form scheduling feature, if enabled.
- Whether any of the forms can be patient self-completed, and information about custom text shown to the patient in the invitation email and after logging in.
- Details on randomisation method used, treatment groups, allocation ratio, strata, blinding, code list length, randomisation limit, data collected at randomisation (where relevant).
- Format of randomisation, unblinding and kit assignment email notifications
- User account privileges.
- Library version numbers.
- Server type (staging/production), database version, current value of settings.

There may also be extra custom information specific to the study.
Chapter 17

Making changes to the specification

Once a Red Pill or randomisation system is in production, changes to the forms or other aspects of the system can only be done through a documented change control process. To initiate this process please download and complete a Change Request spreadsheet [Excel file].

The Change Request Log will require you to complete the following information:

- **Change #** Sequential change number 1, 2, 3, …
- **Visit** Name of visit, e.g. Baseline
- **Form** Name of form, e.g. ECG results
- **Item / Question** The question to be added or changed, eg. 1. ECG - Has a baseline ECG been taken?
- **Change type** One of:
 - New form
 - New field
 - Change field
 - Other change

New or revised forms and fields might be required due to a change in the protocol or a mistake in the original specification. Other changes include changes to validation rules or user permissions etc.

If new field, please record response required When adding new fields, please list what type of response is expected. Please choose from:

- Single line text
- Paragraph text - a text box allowing long text entries
- Encrypted text - a text box whose value will be stored in an encrypted format
Figure 17.1: Flowchart for change request process
• Number
• Date
• Yes/No
• Category - please list all categories eg, Mild; Moderate; Severe
• Clock time - the time of day in 24hr clock format (e.g. 13:15)
• Elapsed time - a duration in hours and minutes (e.g. 30:50)
• Explanation - explanatory text (e.g. The following questions are about your health)

Change description The actual change that is required in the eCRF. e.g. *The drop down menu is missing a category and should be updated to include new option in drop down menu*

Once you have completed the form, please send it to Sealed Envelope for review. Sealed Envelope will review your list of changes and provide you with an estimate of how long it will take to configure these changes and provide you with a cost estimate to fulfil your request.
Chapter 18

Minimisation

Minimisation is a method of randomisation that allocates subjects to the treatment group that best maintains balance in stratifying factors. It is effective even at small sample sizes and with multiple stratification variables.

Example

The method is best illustrated by example. Suppose it is important to balance subject sex in a trial of a new drug, because women are expected to respond more strongly to the drug. It would be unfortunate if, by chance, more women received the new drug rather than placebo and more men were allocated to placebo rather than the new drug. For similar reasons we would also like to balance subject age, so that younger subjects, who are expected to have a better outcome, are evenly distributed to the placebo and drug groups.

The randomisations to the trial so far look like this:

<table>
<thead>
<tr>
<th>Number</th>
<th>Sex</th>
<th>Age</th>
<th>Treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td><30</td>
<td>Placebo</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>30+</td>
<td>Placebo</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>30+</td>
<td>New drug</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td><30</td>
<td>Placebo</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td><30</td>
<td>New drug</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>30+</td>
<td>New drug</td>
</tr>
</tbody>
</table>
The next subject to be randomised is a man age 23.

To decide which treatment to allocate the subject to, the balance of treatments in the trial is compared for subjects with the same characteristics as the subject to be randomised. There are various ways of calculating the imbalance, but the most popular method (and the one Sealed Envelope uses) is to simply sum the frequencies across the strata for each treatment. In this example the frequencies are:

<table>
<thead>
<tr>
<th>Stratifying factor</th>
<th>Placebo</th>
<th>New drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td><30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Clearly in males and those under 30 there is an imbalance in favour of placebo so far. The next treatment allocation is the one with the lowest total score - in this case the next subject will be allocated to the new drug. Note that if the scores were tied, the treatment allocation would be chosen purely at random.

Incorporating a random element

Minimisation as described above is a largely deterministic procedure - given the characteristics of subjects in the trial and the subject to be randomised, the new treatment allocation is almost entirely predictable.

It is desirable to inject a random element into the procedure and, in fact, ICH E9 guidelines require it:

Deterministic dynamic allocation procedures should be avoided and an appropriate element of randomisation should be incorporated for each treatment allocation.

ICH Topic E9 Statistical Principles for Clinical Trials

The Sealed Envelope randomisation system defines a probability that a purely random allocation will be made, instead of using minimisation. So for each randomisation there is a chance (usually

around 30%) that the treatment will be chosen at random. This is equivalent to using a biased coin to determine the next treatment, with the bias in favour of the treatment that would make the treatment groups more balanced\(^2\). If there are two treatments allocated in a 1:1 ratio, and a 30% chance of choosing the treatment at random, then the probability that the under-represented treatment will be chosen is 0.85 (0.3 × 0.5 + 0.7). This probability can be viewed for your trial on the specification page.

Factorial trials

In factorial trials, 2 or more treatments comparisons are evaluated in the same subjects. The most common design is the 2 × 2 factorial trial:

<table>
<thead>
<tr>
<th>Placebo x</th>
<th>Aspirin x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>x</td>
</tr>
<tr>
<td>β-carotene</td>
<td>x</td>
</tr>
</tbody>
</table>

where subjects are allocated to one of four treatment groups. In the above example these are:

- Placebo
- Aspirin alone
- β-carotene alone
- Aspirin and β-carotene

Suppose we want to make sure subject age is balanced between the four groups and the next subject to be randomised is aged under 30. The frequency table for allocations to each treatment group in subjects <30 years old is:

<table>
<thead>
<tr>
<th>Age <30</th>
<th>Placebo</th>
<th>Aspirin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>β-carotene</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

To calculate the minimisation scores for each treatment group, the frequency in the relevant cell

plus the marginal totals are used:

- Placebo: $3 + 5 + 5 = 13$
- Aspirin alone: $2 + 5 + 4 = 11$
- β-carotene alone: $2 + 4 + 5 = 11$
- Aspirin and β-carotene: $2 + 4 + 4 = 10$

So in this case the next allocation will be to the aspirin and β-carotene group. As before, if scores are tied the treatment is chosen at random from the tied groups.
Chapter 19

Random permuted blocks

Blocking is a method of restricted randomisation that ensures the treatment groups are balanced at the end of every block. For example, here are two permuted blocks of 4 with treatment groups A and B:

[A B B A], [B A B A]

Random permuted blocks are blocks of different sizes, where the size of the next block is randomly chosen from the available block sizes. For example, here is a list of random permuted blocks of sizes 4 or 6:

[A A B A B B], [A B A B], [B B A A], [B A A B], [A B A B B A], [B A A A B B]

Stratification

Blocking can be used within strata, so that important prognostic characteristics (the stratification factors) are balanced between the treatment groups:

---	--
Men | [A B A B], [A A B B B A], [B B A A B A], [B A A B] |
Women | [B B A A B A], [A B B A], [B B A A], [A B B A] |

Using this list the frequencies after 9 men have been recruited and 5 women will be:
Choice of block size

Block sizes must be multiples of the number of treatments and take the allocation ratio into account. For 1:1 randomisation of 2 groups, blocks can be size 2, 4, 6 etc. For 1:1:1 randomisation of 3 groups or 2:1 randomisation of 2 groups, blocks can be size 3, 6, 9 etc.

The treatment allocation is predictable towards the end of a block. For this reason block sizes should be kept confidential and not shared with those randomising. Large blocks reduce predictability, but will not restrict the randomisation as closely as small blocks. If interim analyses are planned at particular sample sizes, it is desirable that the treatments are balanced at these points. Having many stratification factors can lead to many incomplete blocks and thereby imbalance. Therefore choice of block size(s) should take into account the sample size, planned interim analyses and number of stratification factors.

You can experiment with different block sizes and stratification factors on our simulation page. This will show you how much imbalance to expect for various choices.
Chapter 20

Simulations

Sealed Envelope can carry out simulations of the randomisation system using an automated testing programme. The randomisations generated by this approach are available for download on the specification page.

How are the simulations produced?

A data specification document is provided to the automated testing programme. This defines the data to be submitted to the randomisation form. The testing programme submits this data to the randomisation form to simulate a randomisation taking place. This process is repeated a set number of times (known as replications or reps) to produce the simulated dataset.

Data specification document

Here is an example of a data specification:

```json
{
  "sample_size": 400,
  "fields": {
    "siteId": {
      "min": 1,
      "max": 10,
      "type": "int"
    }
  }
}
```
It is possible to alter the data submitted to the form to more closely reflect the expected distributions of individual variables in your trial by changing the weight parameter on categorical variables. For example if you expect twice as many women to be recruited compared to men, the weighting on gender would be set to [1, 2].

You can ask Sealed Envelope to make these changes and re-run the simulation.
Analysing the simulated data

You can download the simulated data and import into a spreadsheet or statistics package for analysis. You can check, for instance, that the randomisation protocol is balancing the treatment groups within strata. If you want to make changes to the randomisation protocol or carry out more simulations you should contact Sealed Envelope.

Example

In this example a simulation has been carried out using the data specification above. The randomisation protocol was minimisation on gender, severity and age-group with a 25% chance that a purely random allocation will be made (equivalent to using a biased coin with an 87.5% chance of choosing the treatment that reduces imbalance). The analysis was carried out using Stata.

First we import the simulated dataset.

```
insheet using mytrialRandom.2012-10-31.150000.tsv
```

Now lets start exploring the dataset.

```
. tab gender

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>124</td>
<td>31.00</td>
<td>31.00</td>
</tr>
<tr>
<td>Male</td>
<td>276</td>
<td>69.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```

We can see that gender has been allocated according to the weightings in the data specification (2:1 Male:Female).

```
. li initials gender severity dob agegroup in 1/5

<table>
<thead>
<tr>
<th>initials</th>
<th>gender</th>
<th>severity</th>
<th>dob</th>
<th>agegroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>QO</td>
<td>Male</td>
<td>High</td>
<td>08/08/2001</td>
<td>6.5 years or over</td>
</tr>
<tr>
<td>MT</td>
<td>Male</td>
<td>Low</td>
<td>29/09/2002</td>
<td>6.5 years or over</td>
</tr>
</tbody>
</table>
```
Initials and date of birth (dob) have been generated with random strings and dates. The agegroup variable was calculated by the randomisation system from the date of birth so did not need to be included in the data specification.

```
Initials | Group | Date of Birth (DOB) | Age Group
----------|-------|--------------------|------------
YZ Male   | High  | 06/12/2003         | 6.5 years or over |
P  Male   | Low   | 15/11/2009         | <6.5 years |
MH Female | High  | 29/09/2003         | 6.5 years or over |
```

```
<table>
<thead>
<tr>
<th>gender</th>
<th>Active</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>62</td>
<td>62</td>
<td>124</td>
</tr>
<tr>
<td>Male</td>
<td>138</td>
<td>138</td>
<td>276</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>severity</th>
<th>Active</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>138</td>
<td>139</td>
<td>277</td>
</tr>
<tr>
<td>Low</td>
<td>62</td>
<td>61</td>
<td>123</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>agegroup</th>
<th>Active</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 years or over</td>
<td>94</td>
<td>96</td>
<td>190</td>
</tr>
<tr>
<td>&lt;6.5 years</td>
<td>106</td>
<td>104</td>
<td>210</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>
The minimisation has clearly closely controlled the balance in the three minimisation factors. By way of contrast the balance within sites, which is not controlled by minimisation, can be seen to vary quite widely:

```
. tab siteid group

<table>
<thead>
<tr>
<th>siteId</th>
<th>group</th>
<th>Active</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>20</td>
<td>22</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>21</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>22</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>14</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>16</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>18</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>18</td>
<td>26</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>26</td>
<td>27</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>25</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>
```

We can check the minimisation algorithm by calculating the marginal scores at each observation:

```plaintext
gen Active=0
gen Control=0
forvalues i=2/400 {
 foreach group of varlist Active Control {
 local total 0
 foreach factor of varlist gender severity agegroup {
 qui count if `factor'==`factor'[`i'] & group=="`group'" & _n<`i'
 local total = `total' + r(N)
 }
 qui replace `group'=`total' in `i'
 }
}
```

Control should be preferred by minimisation when its marginal total is lower than that for the Active group:
The proportion allocated to Control in this situation is very close to the expected value of 0.875. We can test this:

```
cii 171 151
```

--- Binomial Exact ---

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>171</td>
<td>.88304</td>
<td>.0245759</td>
<td>.825158 .9270753</td>
</tr>
</tbody>
</table>

The 95% confidence interval is consistent with 0.875. The same analysis for the Active group is:

```
.tab group if Active < Control
```

<table>
<thead>
<tr>
<th>group</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>137</td>
<td>87.82</td>
<td>87.82</td>
</tr>
<tr>
<td>Control</td>
<td>19</td>
<td>12.18</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

```
cii 156 137
```

--- Binomial Exact ---

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>156</td>
<td>.87820</td>
<td>.0261849</td>
<td>.8163508 .9250541</td>
</tr>
</tbody>
</table>

So again the confidence interval includes the expected proportion 0.875. Finally where the scores are tied, the group should be chosen at random:
The confidence interval includes the expected value of 0.5.
Chapter 21

API

The randomisation API allows your server or database programme to perform randomisations using Sealed Envelope or download randomisations on demand. The API is not enabled by default - you must request access to this feature.

The API is used by the OpenClinica Randomize module to perform randomisation from within OpenClinica.